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Abstract

A new use of smoothed particle hydrodynamics (SPH) in fluid simulation is presented: an algorithm solving the Helm-
holtz–Hodge decomposition using SPH in order to find the null divergence velocity field for incompressible flow simula-
tion. Accordingly, a new version of the Laplacian for a vector field is proposed here. In order to improve the accuracy of
the SPH technique, the paper also presents some test problems for understanding the limitations of different kinds of gra-
dient and Laplacian approximation formulas.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Smoothed particle hydrodynamics (SPH) was first invented simultaneously by Lucy [13] and Gingold and
Monaghan [7] to solve astrophysical problems. It has since been used to study a range of astrophysical topics
such as galaxy formation, star formation, supernovas, solar system formation, tidal disruption of stars by
massive black holes, stellar collisions, etc.

SPH is a meshfree method (MFM) based on the Lagrangian description. It is not the first generation of
MFM: many other types exist, such as the finite point method, the diffuse element method, etc. But its par-
ticular combination of adaptivity and Lagrangian and particle nature makes SPH very popular among
MFMs. Today, the SPH method is being used in many areas, such as astronomy, computational fluids,
and even solid mechanics. For decades, it has been expected to be better than the other traditional numerical
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methods for many applications in computational fluid dynamics (CFD). Because of its wide range of applica-
tions in different areas, SPH has enjoyed considerable progress in terms of accuracy, stability and extensibility
since it was first proposed.

SPH can be used for various purposes. Monaghan [14] explains more clearly the properties and criteria of
the formulations used in SPH and gives examples of applications in astronomy and fluid dynamics. We can see
that it can also be used to describe deformable bodies, as in the work of Desbrun and Gascuel [5]. Also, dif-
ferent smoothing kernels and approximation methods for field functions in governing Navier–Stokes equa-
tions can be used in SPH methods. For example, Monaghan [14] and Desbrun and Gascuel [5] used the
same damping function for diffusion force and suggested a symmetric formula for pressure force. Other
authors, such as Yoon et al. [20], Premože et al. [17] and Koshizuka et al. [10], have suggested another smooth-
ing kernel for density estimation and used the deterministic particle interaction models for the gradient and
Laplacian terms in the Navier–Stokes equations.

There are various applications of SPH focused on fluid dynamics-related areas, for example incompressible
flow, elastic flow, multi-phase flow, supersonic flow, shock simulation, heat transfer, mass flow, explosion phe-
nomena, metal forming fractures, etc. [12,14]. One crucial step in simulating an incompressible fluid is ensur-
ing that the continuity equation is satisfied. One way of doing this is to represent the incompressibility of the
fluid by the constancy of its density. In an interesting series of articles by Koshizuka and his co-workers
[10,11,20], the authors keep the particle number density constant by introducing a corrective pressure obtained
by solving a Poisson equation. Idelsohn et al. [9] subsequently generalized this procedure to Lagrangian for-
mulations. Other authors (for instance Morris et al. [15]) obtain the pressure mentioned above from what are
called state equations. It should also be noted that Foster and Metaxas [6] adopted a similar approach, but
within the framework of grid-based methods. A second way of satisfying the continuity equation is by ensur-
ing that the divergence of the velocity fields remains null. This is the approach favored, for instance, by Cum-
mins and Rudman [4], who developed an SPH projection operator based on the solution of a pressure Poisson
equation, thereby allowing them to obtain a null divergence velocity field. In the context of grid-based meth-
ods, Stam [18] used the Helmholtz–Hodge decomposition, again with the goal of achieving a null divergence
vector field. Here, we present an SPH solution of the Helmholtz–Hodge decomposition for a null divergence
velocity field in an incompressible fluid simulation. At the same time, we propose a new version of the Lapla-
cian formula for smoothing kernels instead of the basic one. Some advantages and disadvantages of different
gradient and Laplacian approximation formulas used in SPH are discussed.
2. SPH fundamentals

SPH is an approximation method for particle systems. As stated in [14], we can estimate a function f at
position r by using smoothing kernels W to approximate in a local neighborhood within distance h as follows:
f ðrÞ ¼
Xn

j¼1

mj
fj

qj
W ðr� rj; hÞ; ð1Þ
where mj is the mass, rj is the position, qj is the density and fj is the quantity f for neighbor particle j, respec-
tively. Here, n is the number of neighbor particles with jr � rjj 6 h. To shorten the equation, we omit the n in
all summations. When r = ri, f(r) is denoted by fi.

Thus, we estimate the density qi for a particle i at location ri by
qi ¼
X

mj
qj

qj
W ðri � rj; hÞ; ð2Þ
that is,
qi ¼
X

mjW ðri � rj; hÞ; ð3Þ
where j denotes the index of the neighbor particle (this notation is used throughout).
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2.1. Choice of a good kernel

The first criterion in choosing a kernel to meet the requirements of SPH is that it must estimate the density
of the particle system to maximum accuracy. The kernel should be smooth, symmetric [8,12] and satisfy the
following equation:
intXW ðr; hÞdr ¼ 1; ð4Þ

where W is the kernel function, h is the smoothing length and the integration is taken over all space. More
generally, in order to ensure the consistency of the SPH approximations, as mentioned in [12, Chapter 3], a
kernel must verify the following conditions:
M0 ¼
R

X W ðx� x0; hÞdx0 ¼ 1;

M1 ¼
R

Xðx� x0ÞW ðx� x0; hÞdx0 ¼ 0;

M2 ¼
R

Xðx� x0Þ2W ðx� x0; hÞdx0 ¼ 0;

..

.

Mn ¼
R

Xðx� x0ÞnW ðx� x0; hÞdx0 ¼ 0;

8>>>>>>><
>>>>>>>:

ð5Þ
also
W ðx� x0; hÞjs ¼ 0;

W 0ðx� x0; hÞjs ¼ 0;

�
ð6Þ
in order to ensure that the first two derivatives of the function can be exactly approximated to nth order accu-
racy. If only Eq. (5) is satisfied, it means that the function can be approximated to nth order accuracy. Since
the highest derivative of the field function in the governing equations is of the second order, with the condition
mentioned above, the 2D poly6 kernel chosen for use in this paper is
W poly6ðr; hÞ ¼
4

ph8

ðh2 � r2Þ3; 0 6 r 6 h;

0; otherwise.

(
ð7Þ
The 3D expression of poly6 has been presented by Müller et al. [16]. It can be verified that the kernel poly6
fulfills Eq. (5) for at least M0 and M1 and also Eq. (6) which is the minimum requirement of consistency for
considering second partial derivatives (see [12]).

2.2. Gradient and Laplacian

In SPH, the derivatives of a function f can be obtained by using the derivatives of the smoothing kernel.
The following expressions are the gradient and Laplacian of the function f obtained in this way:
rfi ¼
X

j

mj
fj

qj

 !
rW ðri � rj; hÞ; ð8Þ

r2fi ¼
X

j

mj
fj

qj

 !
r2W ðri � rj; hÞ. ð9Þ
In this paper, we call these the basic gradient approximation formula (BGAF) Eq. (8) and the basic Laplacian
approximation formula Eq. (9). Eq. (9) can be validated by Green’s formula when the kernel W is of class C2

and $W = 0 on oX.
2.2.1. Choosing the gradient formula
There are other ways than BGAF to compute the gradient value for a function f.
The first one is derived by using the derivative of a product [14]. We have
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rðqf Þ ¼ qrf þ frq; ð10Þ

which can be rewritten as
qrf ¼ rðqf Þ � frq. ð11Þ

This yields the following expression:
qirfi ¼
X

j

mjðfj � fiÞrW ðri � rj; hÞ. ð12Þ
Thus the gradient of the function f can be approximated as
rfi ¼
1

qi

� �X
j

mjðfj � fiÞrW ðri � rj; hÞ. ð13Þ
In this paper, we can call Eq. (13) the difference gradient approximation formula (DGAF).
To deal with symmetric forces in order to fulfill Newton’s second law with two particles, some authors [5]

consider another form of gradient by using the derivative of a quotient function. The derivative of a quotient
of functions is given by
r f
q

� �
¼ qrf � frq

q2
; ð14Þ
i.e.
rf
q
¼ r f

q

� �
þ frq

q2
. ð15Þ
We can obtain the formula
rfi

qi
¼
X

j

mj
fi

q2
i
þ fj

q2
j

 !
rW ðri � rj; hÞ. ð16Þ
That is
rfi ¼ qi

X
j

mj
fi

q2
i
þ fj

q2
j

 !
rW ðri � rj; hÞ. ð17Þ
In this paper, we call Eq. (17) the symmetric gradient approximation formula (SGAF).
In order to understand the differences in the gradient approximation given by Eqs. (8), (13) and (17), we

used the three formulas to approximate the gradient value for the same function f. Obviously, the function
f and the function f + C (where C is a constant) have the same gradient. But when approximating the gradient,
as shown below, the results showed that only the difference gradient formula is insensitive to C.

The first example we consider is a plane f(x, y) = C. The gradient of this plane should be 0. In our exper-
iments, however, the three different forms of gradient approximation behave differently, as shown in Fig. 1.
DGAF obtained the most accurate results (in fact, exact results in this case), while the other two formulas
had much greater errors. We also observed that SGAF had a larger error than BGAF. The error increased
as the value of the constant C increased, except for DGAF.

Our second example is a plane f(x, y) = Ax + By + C, where A, B and C are constants, meaning that the
gradient for this plane is the vector (A, B). But our experiments yields the same conclusions as in the first
example. This is shown in Fig. 2.

We also tried the example of f(x, y) = Ax2 + By2 + C, with the same results. We therefore conclude that
DGAF is more accurate than the others in the context of translation and so we chose it as the gradient for-
mula to use in the SPH Helmholtz–Hodge decomposition (Section 3.2). Note that in these tests for gradient
approximations at particles, about ten neighbor particles were used.

2.2.2. New version of the Laplacian

As described in the previous section, we suggested DGAF as the gradient to be used in Helmholtz–Hodge
decomposition. Now, an appropriate version of the Laplacian to accommodate DGAF is needed. By applying
the rule of the product twice, we obtain



Fig. 1. Gradient approximations for the function f(x, y) = 1: (a) basic gradient approximation formula (BGAF); (b) difference gradient
approximation formula (DGAF); (c) symmetric gradient approximation formula (SGAF).

Fig. 2.
gradie

684 F. Colin et al. / Journal of Computational Physics 217 (2006) 680–692
r2ðqf Þ ¼ f ðr2qÞ þ qðr2f Þ þ 2rf � rq; ð18Þ

i.e.
qðr2f Þ ¼ r2ðqf Þ � f ðr2qÞ � 2rf � rq. ð19Þ

The corresponding SPH expression below is obtained by straightforward calculations using Eq. (12).
Gradient approximations for the function f(x, y) = x + 2y + 1: (a) basic gradient approximation formula (BGAF); (b) difference
nt approximation formula (DGAF); (c) symmetric gradient approximation formula (SGAF); (d) correct gradient value.
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qir2fi ¼
X

j

mj fj � fi

� �
r2W ðri � rj; hÞ �

2

qi
rW ðri � rj; hÞ � rqi

� �
. ð20Þ
Thus the corresponding Laplacian approximation expression for DGAF is as follows:
r2fi ¼
1

qi

X
j

mjðfj � fiÞ r2W ðri � rj; hÞ �
2

qi
rW ðri � rj; hÞ � rqi

� �
. ð21Þ
Like DGAF, this version of the Laplacian gives the same result for f and f + C, where C is a constant.
Compared to the basic version given by Eq. (9), Eq. (21) gives a more accurate approximation for the

Laplacian. Fig. 3 below shows the experimental data for the Laplacian approximation for the function
f(x, y) = x2 + y2.

3. A null divergence velocity field

3.1. The Navier–Stokes equations

The classical Navier–Stokes equations for incompressible flows are the following:
r � v ¼ 0; ð22Þ

q
Dv

Dt

� �
¼ �rp þ qgþ lr2v. ð23Þ
The first equation ensures the conservation of mass while the second guarantees the conservation of momen-
tum. Note that D

Dt is the convective derivative (also called the Lagrangian derivative or substantive derivative),
v is the fluid velocity, q is the fluid density, and g is the gravitational acceleration. The term $p refers to the
pressure gradient, l is the dynamic viscosity coefficient where kinematic viscosity is defined by t � l

q, and the
term $2v is the vector Laplacian.

Typically, after applying Eq. (23), the Helmholtz–Hodge decomposition is used to obtain a null divergence
velocity field Eq. (22).

3.2. The Helmholtz–Hodge decomposition

The Helmholtz–Hodge decomposition can be described as follows: given a domain X and its boundary oX,
where g is the outward normal vector to the boundary and q is a scalar field, there is a unique decomposition
of a C2 vector field w,
w ¼ vþrq; ð24Þ

where the divergence-free vector field is
v ¼ w�rq. ð25Þ
Fig. 3. Laplacian approximation values given by Eqs. (9) and (21) for the function f(x, y) = x2 + y2.
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This means that the divergence of vector field v should be 0, i.e.
r � v ¼ 0. ð26Þ

Also, we have
r � w ¼ r � ðvþrqÞ ¼ r � vþr2q. ð27Þ

Combining Eqs. (26) and (27), we get
r � w ¼ r2q. ð28Þ

When considering the boundary, one needs to solve the partial differential equation (28) with the Neumann
boundary condition:
r2q ¼ r � w in X;
oq
og
¼ 0 on oX.

(
ð29Þ
Fortunately, the SPH version of this problem is very simple. It is interesting to note that the solution q is not
unique, but the difference between any two solutions is a constant [19].

3.3. A system for inside particles

In order to solve system Eq. (28) in an SPH way, we use the difference version of divergence [14] and the
Laplacian equation (21). For an inside particle i, we have
ðr � wÞi ¼ 1
qi

� �P
j

mjðwj � wiÞ � rW ðri � rj; hÞ;

ðr2qÞi ¼ 1
qi

� �P
j

mjððqi � qjÞr2W ðri � rj; hÞ � 2
qi
rW ðri � rj; hÞ � rqiÞ; j 6¼ i.

8>><
>>: ð30Þ
This process gives rise to the following linear system of equations:
X
j

aijqj ¼ bi; ð31Þ
where for each i,
aij ¼ ðmj

qi
Þðr2W ðri � rj; hÞ � 2=qirW ðri � rj; hÞ � rqiÞ; j 6¼ i;

aii ¼ �
P
j 6¼i

aij;

8<
: ð32Þ

bi ¼
1

qi

� �X
j

mjðwj � wiÞ � rW ðri � rj; hÞ. ð33Þ
3.4. Additional conditions for boundary particles

For boundary particles, we need to solve the following boundary condition:
oq
og
¼ 0 on oX; ð34Þ
where g is the outward normal unit vector. Assuming that q is known for each boundary particle, according to
the above condition, a SPH version of the system for boundary particles is
ðrqÞi � gi ¼ 1=qi

X
j

mjðqj � qiÞðrW ðri � rj; hÞ � giÞ. ð35Þ
Thus,
1=qi

X
j

mjðqj � qiÞðrW ðri � rj; hÞ � giÞ ¼ 0. ð36Þ



F. Colin et al. / Journal of Computational Physics 217 (2006) 680–692 687
By setting
aij ¼ mj

qi

� �
ðrW ðri � rj; hÞ; hÞ � gi; j 6¼ i;

aii ¼ �
P
j6¼i

aij;

8><
>: ð37Þ
we obtain the same system as in Eq. (31)
X
j

aijqj ¼ bi for each i; ð38Þ
where bi = 0 for boundary particles.
Remark that the definition of aii in Sections 3.3 and 3.4 implies that the unit vector is a solution of the

homogeneous system. Hence the difference between two solutions q1 and q2 is a scalar multiple of the unit vec-
tor (k1 where k is a scalar). This is the discrete counterpart of the non-unicity of the solution we mentioned in
Section 3.2. It justifies the use of the difference versions of the gradient (DGAF), Laplacian and divergence
formulas, which are robust with respect to translation.

3.5. Solving the corresponding linear system

As noted in Sections 3.3 and 3.4, we can form a larger linear system Aq = b which includes both the inside
and outside particles. The upper part of squared matrix A corresponds to Eq. (32) (including the boundary
particles), while the lower part corresponds to Eq. (37) (including the inside particles). To solve this linear sys-
tem, we use the conjugate gradient method on AtAq = Atb.

3.6. Boundary particle setup

In the simulation, it is preferable to have a suitable boundary that can increase the accuracy of estimation
for density and other physical quantities. In setting the boundary particles, we need to obtain the approxima-
tion density q according to the distribution of the initial particles. (In this paper, the q has been taken as the
density which assumed the particles are distributed evenly.) The ideal boundary width has the same value as
smoothing length h. According to these two parameters, the boundary we set would have correct density q and
a sufficient width to ensure correct distribution of the inside particles without crossing the boundary.

3.7. Sample algorithm

The computation of a null divergence velocity field can be used in an algorithm for simulating incompress-
ible fluids as follows:

(a) Initialize particles (positions p, velocities v)
(b) Compute densities q
(c) Apply the momentum Navier–Stokes equation (23) using SPH
w vþDv

Dt
Dt ð39Þ
(d) Compute the null divergence velocity field using the Helmholtz–Hodge decomposition with the Neu-
mann boundary condition

(I) Solve the system

Aq ¼ b ð40Þ
(II) Compute $q

rqi ¼
1

qi

� �X
j

mjðqj � qiÞrW ðri � rj; hÞ ð41Þ



688 F. Colin et al. / Journal of Computational Physics 217 (2006) 680–692
(e) Update particle velocities v w � $q

(f) Update particle positions p p + vDt

(g) Go to step b

4. Results

Given that we are focusing exclusively on the problem of finding a null divergence velocity field using the
Helmholtz–Hodge decomposition, no particle displacement is entailed in the process. Consequently, incom-
pressibility measures such as the one presented by Cummins and Rudman [4] do not apply here. However,
Fig. 4. Initial velocity field of example 1.

Fig. 5. Null divergence velocity field of example 1.
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if the context for our method is taken into consideration, we believe the SPH formulation for the divergence of
the resultant velocity field is the most appropriate measure of the fluid’s incompressibility. We therefore con-
sider the SPH divergence of the vector field for each inside particle (first equation of Eq. (30)), and then, for
each of the following examples, we present the maximum divergence value and the sum of squared divergence.
It should also be recalled that the Helmholtz–Hodge decomposition of a vector field is obtained by solving the
discrete version of a Poisson equation, which is simply a system of linear equations. When the solution of this
Fig. 6. The rows correspond to examples 2, 3, 4 and 5. The first column shows the initial problems; the second column, the state after the
first iteration in computing the null divergence; and the last column, the state after the fifth iteration.
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system is precise, if the divergence of the vector field after correction is still not null, the error arises from a
difference between the SPH formulations for the Laplacian and the gradient of the divergence; such differences
can occur because we are dealing with approximations. However, successive correction by reiteration of our
procedure allows us to take this difference into account and obtain a vector field with the smallest possible
divergence.

Five examples are presented. The initial condition of the testing particle system is shown in Fig. 4 for exam-
ple 1; the particles are represented by dots. The inside particles and boundary particles are separated by the
rectangle shown in the figure. The lines departing from boundary particles indicate the normal vectors gi per-
pendicular to the boundary lines (scale of 1/100). At the corners we take the inward vector parallel to the diag-
onal and of same magnitude as the others on the boundary. All particles have initial velocity (0, 0), except that
those in the rectangle of 0.2 · 0.2 in the middle have initial velocity (0.5, 0). Line segments are traced from the
particles using the velocity.

The solution q was found successfully by solving the Helmholtz–Hodge decomposition with the Neumann
boundary condition. We apply DGAF on q and update the velocity field w with Eq. (25) to obtain a new veloc-
ity field v which exhibits null divergence within the precision of SPH. The results shown in Fig. 5 were obtained
using 2000 inside particles; the smoothing length of the kernel is 1/9. The lines perpendicular to gi are the $q

for the boundary particles; those departing from inside particles are the traces of velocity segments for each
particle. As we can see, all the traces for the particles are well corrected and the result is convincingly good.

As shown in Fig. 6, four more examples were tested with the same conditions as example 1 (Figs. 4 and 5)
but with 361 inside particles and different smoothing length for the kernel (1/5). Note that this is a small num-
ber of particles for an SPH simulation. The first row (example 2) in Fig. 6 has the initial velocity of (0.5, 0) at
the center; the second row (example 3) has the initial velocity of (0.2, 0.2) at the lower left corner and (0, 0.2) at
the upper right corner; the third row (example 4) has the initial velocity of (0.2, 0) at the lower left corner and
(0, �0.2) at the upper right corner; the last row (example 5) has the initial velocity of (0.25 * (positionY � 0.5),
0.25 * (0.5 � positionX)) [4] for all inside particles. The figure shows three iteration states, where the first col-
umn shows the initial state with initial velocities, the second column shows the result after the first iteration of
the null divergence algorithm and the last column shows the result after the fifth iteration of the null diver-
gence algorithm. Furthermore, Table 1 and Fig. 7 show how application of the null divergence algorithm
reduces the divergence after each iteration. For each example, we show the maximum divergence values
and the sums of squared divergence for the particles from the initial state to the fifth iteration of the algorithm.
Maximum divergence is calculated by using Eq. (33) for each inside particle and selecting the maximum value
of the divergences thus obtained. Sum of squared divergence is calculated by summing up the values of the
squared divergence for each inside particle.

We should add that example 5 is drawn from the article of Cummins and Rudman [4], and that while direct
comparison with these authors’ results is impossible, both Table 1 and Fig. 7 demonstrate excellent practical
results.
Table 1
Results for the five examples after successive corrections

Example Value type Init Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

1 Max Div 5.32 1.78 0.93 0.63 0.53 0.46
Tot Div 1250.48 108.01 33.95 17.93 11.13 7.46

2 Max Div 1.43 0.59 0.34 0.23 0.17 0.14
Tot Div 45.66 7.44 2.10 0.85 0.48 0.37

3 Max Div 1.06 0.49 0.28 0.17 0.14 0.13
Tot Div 25.97 4.04 1.25 0.59 0.38 0.31

4 Max Div 0.50 0.32 0.23 0.20 0.22 0.22
Tot Div 8.42 2.71 1.33 0.83 0.59 0.48

5 Max Div 2.81 1.37 0.76 0.52 0.39 0.32
Tot Div 82.61 15.47 5.19 2.45 1.53 1.18

Maximum divergence (Max Div) and sum of squared divergence (Tot Div).



Fig. 7. Maximum divergence and sum of squared divergence: trends over five iterations: (a) maximum divergence; (b) sum of squared
divergence.
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5. Conclusion

One advantage of the method proposed here is that it will be possible in future work to consider an incom-
pressible fluid of variable density, as Almgren et al. [1], for instance, have done. Indeed, equations to model
such fluids require a null divergence velocity field despite the fact that the density is not constant, making it
impossible to apply the methods favored by Koshizuka and his co-workers [10,11,20] or by Morris et al. [15].
To our knowledge, no SPH approach yet exists for problems of this kind.

SPH is a meshfree particle method which is attractive for its adaptivity. Although it may produce larger
error for some specific problems than some other methods, its accuracy can be improved by various correction
schemes [12]. As presented in this paper in Sections 2.1 and 2.2, we can use a suitable kernel, gradient approx-
imation formula and Laplacian approximation formula to help us to obtain more accurate simulation results,
as well as setting the boundary particles to avoid boundary effects.

In this study, we have achieved a different way to obtain a null divergence velocity field by using a new
algorithm – a pure SPH solution of the Helmholtz–Hodge decomposition. The discussion for gradient approx-
imation formulas will also supply a valuable reference for subsequent work.

Finally, an upcoming stage in the development of our technique would be to incorporate the corrections to
the SPH method presented by Bonet and Kulasegaram in [3]. We should mention that there are many other
possible corrections; among other work on this topic, we refer the reader to the paper by Belytschko et al. [2]
and the references cited there.
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